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of mathematical maturity (the tensor prod-
uct of arbitrarily many algebras over a field
is defined on pages 62–63, and the inverse
limit of a projective system is defined on
page 126). In the U.S., students will def-
initely need a course in abstract algebra
before reading Lorenz’s book. And as in-
dicated by some of the topics listed above,
parts of the book are rather sophisticated—
it will take a strong student to fully appre-
ciate the arguments and fill in the details
omitted from the proofs. But the book will
be very rewarding for such students.

One small regret is that the references are
mostly to books in German; it would have
been helpful to give equivalent references to
books in English. The only typographical
error I noticed was on line −2 of page 119.
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Graphs seem to be everywhere nowadays,
from the Internet and its power law graphs
to terrorists’ networks and gene networks.
They are also making mathematical news.
The perfect graph conjecture was recently
solved. Also, we have the completion of
Robertson and Seymour’s heroic series on
graph minors with its many applications.
Even the recent “back to the axioms” proof
of the Jordan curve theorem rests on the
fact that the complete bipartite graph on
two sets of three vertices in not embeddable
in the plane. In our experience, most math-
ematicians (applied or not) don’t know the
first thing about graph theory. They glaze
over at the new developments and have to
duck when simple combinatorial problems

cross their paths. If you want to change,
have we got a book for you!

Reinhard Diestel has written a deep,
clear, wonderful book about graph theory.
It is filled with examples from the heart of
the subject: matching theory, connectivity,
planarity, coloring, flows, Ramsey theory,
and random graphs all are developed in
separate chapters. To paraphrase from the
introduction (page viii):

A typical chapter begins with a brief
discussion of what are the guiding ques-
tions in the area it covers, continues
with a succinct account of its classical
results (often with simplified proofs)
and then presents one or two deeper
theorems that bring out the full flavor
of that area. The proofs of these lat-
ter results are typically preceded by an
informal account of their main ideas.
They are then presented formally.

Thewriting is terse but clear. You can really
follow the proofs without a graph theorist’s
intuition.

A highlight of the book is the only acces-
sible account of what has come to be called
Robertson–Seymour theory. To introduce
this theory, consider the following ways of
reducing a graph G (which we assume to
be undirected, with loops and parallel edges
allowed): (i) delete an edge; (ii) contract an
edge; (iii) delete an isolated vertex. (Con-
tracting an edge e = uv means removing u
and v and adding a new vertex ve which
becomes adjacent to all the former neigh-
bors of u and v.) Any graph G′ which can
be produced by successive applications of
these operations is called a minor of G. Ev-
ery graph that is isomorphic to a minor of
G is also called a minor of G.

Now consider the two graphs in Figure 1.
The left-hand graph is K(5), the complete
graph on 5 vertices; the right-hand graph
is K(3,3), the complete bipartite graph on
2 sets of 3 vertices. A classical theorem of
Kuratowski is equivalent to the statement
that a graph can be drawn in the plane
without crossing edges if and only if it does
not have K(5) or K(3,3) as a minor. One
might naturally ask whether a similar result
exists for graphs which are embeddable in
higher genus surfaces. In other words, can
such graphs be characterized by excluding
some finite list of graphs as forbidden mi-
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Fig. 1 Two nonplanar graphs.

nors? It turns out that not only is this true,
but in fact something much stronger holds.
Let us call a graph property hereditary if
it is “closed under taking minors.” This
just means that if a graph has some prop-
erty, then any minor of the graph also has
that property. Thus, being embeddable in a
fixed surface is a hereditary property. The
Robertson–Seymour theorem says that any
hereditary graph property can be character-
ized by a finite list of excluded minors. The
proof of this result has taken over twenty
years and runs over some twenty papers.
Diestel’s book contains an overview, many
applications, and real proofs of essential
parts. This work also has profound applica-
tions to graph algorithms. Let us explain. A
nonmathematical reader may say, “That’s
nice. You can work hard and wind up prov-
ing you can draw a picture of a graph in
the plane. So what?” If a graph is pla-
nar, many algorithmic tasks (such as decid-
ing colorability, which is used in scheduling
problems and many others) can be done
efficiently. These tasks require exponential
running times for general graphs. Similarly,
for graphs characterized by a finite list of ex-
cluded minors, many algorithmic tasks can
be accomplished by cubic time algorithms
(or better). The methods underlying the
proof, for example, tree width (a kind of
dimension theory for general graphs), seem
destined to play fundamental roles in areas
such as phylogeny.

Diestel’s book is written with remarkable
expository care. For example, the margins

are filled with pointers to where the present
lemma is used and where a needed lemma
can be found. The margins highlight where
on the page a particular definition can be
found.

The book is designed as a textbook for an
upper division undergraduate or beginning
graduate course. It contains a wealth of ex-
ercises and a section of hints. We have also
found it very useful for self study; the writ-
ing and cross-referencing are clear enough
that you can dip into a section or individual
result without having to start from the be-
ginning. Watch out, though, since the writ-
ing (and the author’s infectious enthusiasm)
can keep you reading long after you have
found what you first wanted! The notes at
the end of each chapter give brief but good
historical summaries, pointers to specialist
literature, open problems, and philosophy.

This is a serious book about the heart of
graph theory. It does not have a collection
of made-up fake applications. The book has
depth and integrity. The “right” versions of
theorems are proved honestly without hand-
waving, yet we don’t find much straying
toward esoteric corners. The third edition
has incorporated a number of recent devel-
opments. Of course, a 400-page book can-
not cover everything. The author laments
two omissions: algebraic graph theory and
applications. We can recommend the treat-
ment of these in Algebraic Graph Theory,
(Cambridge University Press, 1993) by Nor-
man Biggs, and Spectral Graph Theory by
Fan Chung (AMS, 1997).
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If you want to meet graph theory in its
grown-up modern form, get a copy of this
book and teach a course with it. You will
be well rewarded.
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In the introduction to his book [4], S. W. P.
Steen describes mathematics as “the art of
making vague intuitive ideas precise and
then studying the result.” Mathematical
logic is the result of applying this art to
the reasoning that is basic to all mathemat-
ics. Beginning with vague intuitive ideas
and moving gradually to precise ideas is
also an excellent style of teaching that this
book practices well.

A study of a class of mathematical
structures requires first the definition of
a language L, the sentences of which (L-
sentences), when interpreted, can express
properties that may or may not hold of a
particular structure of the class.

Then the goal is to find a set Γ of L-
sentences, the axioms, each of which is true
of every structure in the class; that is, ev-
ery structure is a model of the axioms. The
study of the structures can then proceed by
considering the L-sentences ψ that can be
proved from Γ, in symbols Γ � ψ, in the
sense that there exists a derivation of ψ
from Γ.

This sketch may sound intuitively clear,
but even the simplest of its notions raises
questions that need answers. What is an ac-
ceptable definition of a language L? Surely
the definition is required to be effective in
the sense that given any sequence of the
primitive characters of L it is possible to de-
cide in a finite number of steps whether the
sequence is an L-sentence. But what does
“effective” mean precisely? Or of greater
importance, what exactly is “a derivation
of ψ from Γ?” Does the relationship Γ � ψ
differ from the relationship Γ |= ψ that

holds when ψ is true in every model of Γ?
This book studies such questions with

great care in the context of several mathe-
matical structures and languages. The care
is immediately evident with the first study,
that of the simplest of the languages of logic,
the propositional logic and the truth func-
tions. This early attention to detail pays off
in the later studies of first-order logic, first-
order theories, arithmetic, monadic second-
order logic, typed higher-order logic (brief),
infinitary logic, and set theory, and diverse
mathematical structures related to these
languages. The success of modern logic is
demonstrated in the proof of the implication

Γ |= ψ =⇒ Γ � ψ,

the completeness theorem, for many classes
of axioms and models. The converse of this
implication follows from the definition of
the relationships Γ � ψ and Γ |= ψ.

The value of the early attention to de-
tail becomes most evident in Chapter 4,
“Incompleteness and Undecidability,” and
Chapter 5, “Topics in Definability,” where
the most profound results of twentieth-
century logic are motivated and established.
There attention is turned to a language LΩ

for arithmetic or number theory. Everyone
familiar with arithmetic is likely to con-
clude immediately that there is exactly one
structure in the class of structures to be
studied, the one characterized by the or-
dinary addition and multiplication tables
and the less-than ordering of the natural
numbers; this structure is what is called
the standard model for arithmetic. One of
Gödel’s theorems states essentially that it is
not possible to find an effectively decidable
set of axioms Γ for arithmetic for which
the displayed implication can be proved for
every sentence ψ of LΩ when attention is
restricted only to the standard model, a re-
sult that depends upon careful definitions of
decidabiliy and effective calculability. But
there are structures that are models of ax-
ioms for arithmetic, the nonstandard mod-
els, for which the implication is derivable
for every ψ; it is these models that Abra-
ham Robinson exploited in the development
of nonstandard analysis (see, for example,
[3]) and that demonstrate the importance
of model theory for an understanding of
axiomatic theories.
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